If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+19x+50=0
a = -4.9; b = 19; c = +50;
Δ = b2-4ac
Δ = 192-4·(-4.9)·50
Δ = 1341
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1341}=\sqrt{9*149}=\sqrt{9}*\sqrt{149}=3\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-3\sqrt{149}}{2*-4.9}=\frac{-19-3\sqrt{149}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+3\sqrt{149}}{2*-4.9}=\frac{-19+3\sqrt{149}}{-9.8} $
| -10|3v+6|+5=-85 | | 7−c=−19 | | 3x+(-5)=-11 | | 5r=2r+21 | | -1+x=-2x+8 | | -12=k/18 | | -124=-8(1-3k)+5k | | 5x+2x+4=8 | | x²-8x+2x=14+7 | | 4-9x=1+2x | | 2r-6r=-6-4r-2r | | p/6-3=8 | | 4.9x^2-19x-50=0 | | 7x+4=6+8x-2 | | x2-6x-21=0 | | 76.47x=52x | | 10x+40=130 | | 9n+3n=35 | | 4(x-5)+2x+12=6x+12 | | 1/7x+4=14 | | 4k+12=68 | | 8m-3(-1-2m)=115 | | -6-10=-5r | | -44+8x=68 | | (x+150)=3/4(x=150) | | 3x+10=-6x+28 | | -(x-4)-x=5-3x | | 13x+22=180 | | x+.2x=23.2 | | 4(x−1)2−10= 26 | | 9-3x+11=8 | | 11x+3+100=180 |